Question/Activity	Likely response	Rationale
We're using slinky springs here to find out		Introduction to
how shock waves travel using the 'Slinky		seismic waves
seismic wave demo' Earthlearningidea		
Explain that when faults break suddenly, they		Concrete
cause earthquakes which are shock waves		preparation: initial
or seismic waves radiating from the		explanations
earthquake site.		
Explain that we are going to simulate this		
using a slinky spring		
Ask someone to hold the slinky vertically,		
then show how sudden movement of a fault		
produces shock waves which radiate		
outwards and can reach the surface – pull		
the bottom of the spring out to the side and		
also downwards and then release it suddenly		
Explain that you actually generated two		
different softs of shock waves.		preparation. Turther
• by pulling it downwards and releasing,		
compressional or P-waves were produced		Seisifiic waves
• by pulling it out to the side and releasing,		
transverse snake or 5-waves were		
So the same earthquake produced both sorts		
of waves		
Demonstrate P-wave movement – pulling		
downwards and releasing		
Demonstrate S-wave movement – pulling out		
to the side and releasing		
Then hook the vertical slinky onto the centre	when it reaches the	Cognitive conflict:
of another slinky held horizontally between	'surface slinky', that will	what will happen?
two other people and ask what they will	move up and down	
expect will happen when you generate a		
shock wave in the vertical slinky		
Pull the bottom of the vertical slinky down		
and out again and release to demonstrate		
how P- and S-waves cause surface waves		
Note that it is the surface waves which are		Bridging: relating
most damaging		the slinky
		movement to the
		effects of real
		seismic waves